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By
ROBERT M. MUNOZ

WASA/AMES RESEARCH CENTER

And
5. PARK CHAN
UNIVERSITY OF SANTA CLARA

ABSTRACT

The iopnlegical approach to the analysis of bilateral networks has
been important for many years because, for certain classes of networks,
it is computationally very efficient, Within the last ten years many
investigators have conceived and developed extensions of the basic
theory, separatc methods to analyze general linear networks which may
containunilate ral elements, One mightwellask, "Why somany separate
methods?'. The answer lies in the complexity of the problem which
offers many possible avenues of development. The main substance of
this paper is a new method which is comparatively simple and well

suited to the analysis of general networks by computer.

The first part of the paper discusses many of the important con-
tributions of the previous investigators, An analysis of the procedures

and selected examples for some of the methods are given.

The second part of the paper shows the development of a new
method which is optimal in some senses. A mathematical development
based on several new topological theorems shows how network functions
can be derived from the directed trees and two-trees of a partly ori-
ented graph. It clarifies the relationships between nonoriented, ori=-
ented, and partly~oriented graphs and shows that some earlier methods
using oriented graphs overspecify the network with redundant infor-

mation for ecach bilateral element.
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AN OPTIMAL STRATEGY FOR TOPOLOGICAL ANALYSIS
OF GENERK AL NETWORKS BY COMPUTER

BY
ROBERT M, MUNOZ
AND

S. PARK CHAN

INTRODUCTION

Topological methods of network analysis have had a long history of
development from the time of Kirchhoff and Maxwell, Many investiga-
tors in the academic comrnunity have been very faithful about reporting
contributions of predecessors and contemporaries in the field and have
generally contributed to the large fund of knowledge presently available
on the subject. Men such as Percival [2:' , Coates [4] , Mason [3] ,
Mavyeda [l:l s Seshu [10] » and many others have each made some
important contributions and when taken together their efforts in topo-
logical analysis constitute a definitive body of knowledge on the subject.
So many different and in some aspects redundant methods have been
introduced that a re-evaluation and a survey of these methods according
to the standards that exist in engineering practice today should be of
great value. One objective of this paper is to attempt such a re-

evaluation.

It is certainly not possible to say what Kirchhoff and Maxwell held
as a prime motivation for instituting the topological analysis technique
but it is possible to say that for most practitioners of the art today,
the ability to analyze small electrical networks by hand and the ability
to formulate cfficient computer analysis routines for intermediate
size networks represents the consensus. The efficiency and the
simplicity of the topological technique can hardly be disputed when

compared with certain other methods of analysis though this fact might
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easily be obscured in the process of reading through some of the math-
ematical proofs and derivations presented by the numerous investiga-

tors,

Because of this promise of simplicity and efficiency in hand cal-
culation and the possibility of improving on the state-of-thé-art in com-
puter aided topological analysis, the purpose of this Paper is to review
the important recent contributions to the art and present a new and

improved method,

Fundamental Characteristics of the Topological Method.

The topological method is basically a symbolic method and can be
compared with numerical methods such as the state-space and matrix
methods based on Kirchhoff's voltage and current equations. Because
this is true, none of the problems of numerical stability or accumulation
of error found in the numerical method are enc ountered until an actual
numerical result is required. A network can be analyzed symbolically
and a numerical result can be derived from a symbolic solution by
assigning numerical values at the end of the analysis process. One can,
by these means, obtain any desired degree of accuracy. This may seem
at first to be a trivial recommendation, however in practice, this prob-
lem of accuracy and numerical stability has become the dominant prob-
lem. There is a price to be paid for symbolic analysis however, It
shows up clearly when a network of approximately fifteen nodes and
twenty branches is analyzed in computer., For such a network there is
a possibility of obtaining over 150, 000 terms in the expansion of the
determinant of the node admittance matrix, Clearly, such a network is
too large to deal with by hand and the value of knowing symbolicly the
relationships between 20 network elements is qQuestionable., Since the
complexity of symbolic analysis grows disproportionately with increas-
ing network size, a finite bound exists on the application of this tech-
nique even when the computer is used and numerical values are

substituted into the symbolic analysis results to produce an answer.
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For the larger networks, the greatest promise seems to be offered by

the state-space technique if the numecrical difficulties can be overcome,

In computing the frequency characteristics of a network by state-
space analysis, it is necessary to evaluate the function (sI-A) where s
is the complex frequency, A is the state-space parameter matrix char-
acterizing the network, and I is the identity matrix., This is essentially
a symbolic matrix in s with numerical coefficients if A is entirely
numerical, Procedures such as the Faddeev Frame Souriau algorithm

[__16] have been used but with difficulty because unexpected errors can
easily accumulate and cause trouble. Recent experiences with the QR
algorithm of Francis [22] [:23] indicate that better results are pos-
sible. However, there are still problems especially for networks with
combinations of small and large time constants. Networks of this type
cause the eigenvalues of the (sI-A) matrix (natural resonances of the
network) to vary over large numerical limits thus precipitating the
problems peculiar to the "Ill Behaved Matrix'., Signal flow graph meth-
ods are another topological technique for network analysis and, as shown
by Mason [17] and Coates [19] can be considered as a subset of the
methods discussed here, Happ, Carpenter EZOJ and others have used
flow graph techniques in computer aided analysis and one cannot com-
pletely discount the possibility of important developments in this field.
Pritsker [21] has also used a graph reduction technique and has shown
the value of this technique in evaluating weighted schedule diagrams,

But we will not discuss flow graph methods, per se, further in this

paper.

Organization of the Paper.

The major content of this paper has been divided into three parts,
The first part constitutes a review of a number of recent papers on
topological analysis. Each of these papers will be discussed individually
according to the following format: A short outline of the procedure for

obtaining the determinant of the node admittance matrix of a general
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nonreciprocal networi will be presented, This will be accompanied in
each casnc by discuscion of the recommending features and the weak
points as they apply fo hand and computer aided analysis. Examples
of the procedures will be presented.

The second major part of the paper will be a comparative discus-
sion of all the methods that were reviewed in the first part and an anal-
ysis of the cormmeon features among all methods., A serious attempt to
obtaln an obhjective comparison will be made, however, some of the
arguments presented might justifiably be considered arbitrary from

the point of view of those with different objectives in mind,

In the third part of this paper a new method of topological analysis
of general networks will be presented. Here an attempt is made to
restructure and simplify earlier techniques showing the very close rcla~-
tionship between topological analysis for general networks and that for
reciprocal networks, An outline of a proof for this technique is pre-

sented and appropriate examples are worked to illustrate the method,
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TOPOLOGICAL ANALYSIS OF GENERAL NETWORKS BY THE METHOD
OF D. P, BROWN.

In the development of ordinary topological analysis of bilateral
networks, a relationship is made between the terms in the determinant
of the node admittance matrix and the trees of the graph associated with
the network. This relationship demands that the network edge admit-
tance matrix be diagonal. In the analysis of general networks, the edge
admittance matrix is not necessarily diagonal. In order to rectify this
unfortunate fact of life, Brown has devised a way to model all non-re-
ciprocal elements by a 2 x 2 submatrix of admittances., This sub-ma-
trix is then treated as a single admittance and the ordinary rules for
finding network functions by finding trees of the network graph are used.
It is then necessary to expand the result thus obtained by the determi=-
nants of the matrices representing the coupled elements, Because the
algebraic modeling process is somewhat complex and the rules for
determining the admittance products are quite involved, the method
seems very cumbersome, The following is a step by step procedure of

the method,

Preliminary Limitation,

No coupled elements which produce a singular 2 x 2 admittance

matrix are allowed.

Procedure,

I, Describe all coupled elements by means of a 2 x 2 matrix relating

the voltage and current in these elements,
II. Assign voltage directions across each element.

III.  Arrange an oriented graph G of all elements, It is necessary to

retain edge orientation even for passive elements,
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VI.

Find all trees of G,

+ Inspect all the trees and compute tree admittance products accord-

ing to sub-procednre 1 for those trees which do not contain any

coupled elements (one of two clements expressed by the 2 x 2

matrices computed in I above),

Sub-procedure 1,

This procedure identifies all trees containing only bilateral
or uncoupled elements and trecats them as a separate set. Tree
admittance products are computed for every member of this set

in the ordinary manner. For example, if the following are trees

containing only bilateral elements: 1, 2, 3;1, 2, 4;1, 3, 4
then the tree admittance parameters are: Y1 YZ Y3, Yl Y2 4’
Y1 Y‘3 Y4} .

For those trees which contain coupled elements, inspect and sep-
arate out all those that contain both elements of a coupled set and
compute the tree admittance products according to sub-proce=~

dure 2,

Sub-procedure 2,

This procedure identifies all trees containing both elements
of a coupled pair and treats them as a separate set. Tree admit-
tance products are computed for every member of this set by
first computing the determinant of the admittance matrix YA rep-
resenting the volt-amp relationships between the coupled elements,
then, using the result as a factor representing the pair, compute
the required admittance product. For example, let elements a
and b be coupled elements, Further, assume that a tree 1, 2,

a, b, 3 exists. The determinant of the admittance matrix

-6~



ViII.

representing the coupled pair is Yaa Ybb - Yab Yba and the tree

adimitt 2 ductis: Y, Y Y_ Y Y - Y Y Y Y Y .
; mittance Prodiuict 18 1 2 3 aa bb 1 2 3 ab ba
For those trees which contain only one element of a coupled set

or pgroups of elements of coupled sets, the counterparts of which
arc not in the tree, compute tree admittance products according

to sub-procedure 3,

Sub-procedure 3.

This proccdure identifies all trees containing one element
A of a coupled pair or coupled pairs ap, b . The other ele-
ment or elements b _ which are not in the tree must therefore be
chords or links, Tree admittance products are computed for
every member of the set by first computing the determinant of a
special matrix Ye representing the interrelationships between
these clements. Then, using this result as a factor representing

the elements, the tree admittance products are computed,

The order of the special matrix is p where p is the number
of coupled elements with no counterpart in the tree in question.

Diagonal entries in Ye are found in the following way:

, :
Y, 4 if the pth edge does not
P lie in the loop completed
by b_.
7 p
Y = ‘
PP
\ Y, , a + Yb . a if the pth edge lies in the
p P p P loop completed by link

bP and the + sign is taken
if a_ and b_ have the same
p P :

orientation.



Off diagonal elements of Ye are found in the following way:

( + Yb a if the edge aq lies in the
L loop completed by bp.
Y = +
ap
L 0 otherwise and the + sign

is taken for confluence of

a_ and b_.
q Y

As an example, consider the tree 1, 2, ajs 3, a e Assuming the

following topology for the tree:
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VIII.

Therefore, the tree admittance product computed for this tree is:

) X )

Y, Y. VY
Z 3 ays Ay ass a2

1

v ) (Y

+ Y. Y., Y Ye
273 Ays al bz, a2

1

For those trees which contain both elements of coupled sets as
well as éingle elements with their counterparts, a combination

of sub-procedures 2 and 3 is used. Since the classes discussed
in VI and VII above are mutually exclusive, it is enough to mul-
tiply Det Y of sub-procedure 3 by Det Yal Det Yalz « « o Det Yav
of sub=procedure 2 and also by the admiftances Yi of the uncou-

pled elements to obtain trec admittance parameters for trees of

this type.

Sum the products developed in V, VI, VII and VII above to produce

the determinant of the node admittance matrix. An example is

shown in figure 1.

Y1 Y3

A

+/ + \
@ Va (Y2 | TR |74 Ve c o
2

Figure 1,

Example Network,
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Our first probleir. is to find out the naturc of the coupled network
irnmeshid within the total network, This cannot be done easily
for the general case by inspection and therefore represents a
separate computational task which in some ways is irrelevant to
the ideal topological approach. Only certain kinds of coupled net-
works are permissible - those which produce a nonsingular 2 x 2
submatrix within the otherwise diagonal matrix of admittances
representing the neiwork. Let us consider the Kirchhoff's current

law equations of this network expressed in matrix form as follows:

Specifically for this network:

puae - - - P -~
(Yl + YZ + Y3) ’Y3 0 Va Yl -Vin
~ly, tv3) (y3 tvy tvyg) -V v l= |0

- +
b = 3 ond e L

Let us decompose this expression into topological information and

admittance parameters by recognizing that:

y = avy A
n e
where A is the incidence matrix of the graph which represents the

network and Ye is the edge admittance matrix.

1 2 3 4 6

a 1 1 0 0

A = b 0 0o - 1 0
0 0 0 0 -1 1

~]Q-



If we treat Ye as an unknown matrix X, with coupled edges repre-

sented by entries in columns 2 and 5, we have:
1 2 5 3 4 6

NS 1
2 X520 Xoi
> ¥52 *55
Ye = X = 3 Xa3
4 X44
6 x66.

Rearranging the coupling elements 2 and 5 in the A matrix, we

have:
1 2 3 4 6
A - al1 1 0 0
b{o o0 - 1 0
clo o -1 0o o 1
and,
_ -
1 1 o0 1 *11
0 1 -1 .
AY, = 0 -1 0 0 22 725
X52 *55
%33
%44
L 64
11 %22 X25 %33 0 0
=10 X5 X5 X33 ¥4y 0
0 “Xg,  “Xgg 0 0 X

-llw



e n
F 0 o] [1 ]
X1] X2 %55 %33 0 0
= 0 )qr:52 x55 ~x33 x‘]r4 0 1 0 0
0 -x52 -}{55 0 0 x66 0 1 -1
e anl
1 -1 0
o 1 0
o o0 1
. -
- -
X11%23%33  *257%33 %25
= | ¥527%33 X3 3% 4 %55 "Xsg
“X52 55 Xgd% 64

Each term in this matrix can be equated with a term in the Yn

matrix given earlier and the values of the x's are found in terms

of the y's. _ - 0o
ST A *44- Y4 *25 ©
*227 Y2 ¥55 = Vg *52 T Vg
*337 Y3 *66~ Y6

B2 0 ]
Y, =
Vg Vg
Y, V.= L,
or
Y, 0 v, ) 1,
Vg s Vs ’s

=12~




This i: ¢, volt-amr rclation for a loaded voltage controlled cur-
reni sovrce such as that shown in figure 2, If the current gener-
ator had not peen shunted by admittance Y5, we would have had a

singular matrix and the problem could not be solved in this way.

The graph associated with the original network is shown in

figure 3.

Compuling trees of the graph G, we have:

) (2
6 C 2
| . 6 ) (2_4.
(1 35 5) (2 3 5) (2

WO &

afinllntic
el

The trees encircled are those containing coupled elements.

Figure 2,

Voltage Controlled Current Source,
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Figure 3,

Graph of the Example Network,

For uncoupled elements, tree admittance products are com-
puted exactly as they would be in ordinary topological analysis of

passive networks,

The following is a list of trees without coupling elements
associated with their tree admittance products as obtained by sub-

procedure 1,

1 3 6 @ Yy Y3 Y
1 4 6 -**;;> 1 Y4 Y6
346 ——> Y3 Y4 Yg-

For trees containing coupling elements, the very complex set

of rules used to establish edge weight will be shown.
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TI'ree admittance prodincts obtained by sub-procedure 2 are as

follows:

2 3 5——> y3 Det Y. = ¥, V3. Vg
> vy Dety =y, v, Vg

2 5 6"'""> yéDetyc=y2y5 Vg

Those obtained by sub-procedure 3 are as follows:

b3 —"'> Y1 Y3 Ys
L4 522> vy vy g
1 5 6 :> Y1 Y5 Y
2 3 6 ‘_“':> vy, = vg) (73 vg)
2 4 6_____"-“'> 2 y4 Y(:
3 4 5 ______’_‘_> y3 y4 y5
3 5 6 :> Y5 Vs Vg -
Therefore:
b = Y1 Y3 Yo t Yy Yy Yo t Y3 Yy Ve 7
v, Y3 Y5 t Y, Y4 Y5 Y, Yy Ve
tp Y3 Y5 t Y Y4 Y5 t Y] Vs Y o F
Yy Y2 Y3t Ve Y3 Vg F Y2 Yy Vg +
g Yy Y5t Y3 Vg5 Vg

-]5a



In order to begip this topological process it is necessary to
model non-reciyprocal clements by small matrices, This is an
iwvolved process to perforin by hand and a challenging program-
ming problem if done by computer. Here an algebraic step is
injected into the solution and one can question whether it is still
valid in the general case to consider the method exclusively topo-
logicale It might be more meaningful if the original network
topology were modified to ease the burden of subsequent compu-
tation. Brown claims the advantage of using original network
topology but this is obviously a complicating restraint, Further-
more 1t is not possible to live within this restraint if a network
containing a non-loaded current generator or certain other kinds
of active networks are encountered. This fact coupled with the
difficulty of obtaining tree admittance products by three separate
sub~procedures results in complexity that diminishes the utility of
the method. The necessity for forming a fully oriented graph and
i1sing edge orientation in sub-procedure 3 in the determination of
the admittance products also complicates the method. Most of the
difficulty of computing sign terms is eleminated but the price that

is paid shows mainly in sub-procedure 3,

~l6-



TOPOLOGICAL, ANALYSIS OF GENERAL NETWORKS BY THE METHOD
OF W, K. CHEN,

Chen has approached the problem of network analysis from a
somewhat different point of view. He assumes as a point of departure
that analysis is being done by hand and that the node admittance matrix
or loop impedan.ce matrix is available, This assumption is somewhat
limiting in that the algebraic formation of these matrices should, if
possible, be avoided if we are to exploit all the benefits of the topolog-
ical method. However, the method is still very useful under the condi-

tions for which it was intended.

3

Once the loop impedance or node admittance matrix is formed,
Chen has shown that a directed graph representing the matrix can be
used to compute determinants and cofactors which, of course, can in
turn, be used to compute network functions. These determinants and

cofactors are shown to be obtainable from the directed trees anddirec=
ted 2-trees of the graph.
Procedure,

I, Form the node admittance matrix, (One could proceed in simular

manner with loop impedance matrix, )

iI. Form the directed graph or digraph G from the entries in the

node admittance matrix according to the following rules:

a. There are (n + 1) vertices where n is the order of the node

admittance matrix Yn (vertex r being the reference vertex).
b. Identify each diagonal entry bii in Yn with a directed edge

from the vertex i in G to the reference vertex r. Orientation

of the edge is toward r and the value of the edge is:

«l7-



Edge value b.. - b
ii i

for diagonal = x

entries

e

WX
“He i

C. Identify all off diagonal entries bij with an oriented edge

directed from vertex i toward vertex j with value bij'

Find all directed trees of the graph terminating at the reference
vertex. A directed tree is a tree with edges whose orientation is

confluent toward the reference vertex,

Compute the determinant A of Yn as the sum of directed tree

admittance products.

A very simple nonreciprocal network N shown in figure 4 will be

used to demonstrate Chen's method.
The linear directed graph G corresponding to N is shown in figur

The node admittance matrix Yn for G written with vertex r as

reference is:
a b

- -

a |ly; ty,) O

~18-



Figure 4,

Example Network N,

\ 3P

Figure 5,

Graph G of Example Network N,
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From graph G , it can be secen that some of the intui-

tive significance of the topological method is lost. The edges

(yl + yz) and (y3 - yg) are no longer simply identifiable with ret-
work parameters, The directed trees terminating on the reference

vertex r are as follows:

a y b
by, v, ::> vg by +v,)

r

a b
by, +v,) (y; = Yg)
r ::‘_‘> y3 = v) by + v,

and therefore,
A = Yg¥1 * V¥ t Vs - Vg1 = Yg¥a T Yoy,

= (yy ty,) (v3)

Here the interesting fact of cancellations pertinent to all topo-
logical methods for nonreciprocal networks is demonstrated.
Although topological methods normally reduce cancellations and
the attendant amount of computational labor involved in evaluating
A, this is not always the case. No method of avoiding cancel-

lations entirely has yet been devised.

w20=



Chen's method improves on the method of Mayeda [1] and
Coates [4] by cansnlidating two graphs, the voltage and current
graphs, into one dirceted graph, Chen's graph is nonetheless
more complex than necessary because two edges are used for
each bilateral element not touching the reference vertex, Our
example did not show this fact because the reference vertex was

common to all admittance elements,

Since Chen's stated objective was the reduction of the labor
of computing the network determinant A and its cofactors, no attemptwas
made in his paper to discuss the formal relationships between
the graph and the original network, Other investigators, however,

have more than made up for this defficiency,

The importance of Chen's contribution lies mainly in the
concept of the directed tree admittance products. Using this
concept, he has avoided the difficult problem of determining the

sign of the terms in the expansion of A,
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TOPOLOGICAL ANALYVSIS OF GENERAL NETWORKS BY THE METHOD
OF 5. J. MASTIL.

Mgason has presented amethod of topological analysis of general
linear networlk: whichdoes not require any intermediate algebraic operations
beyond those nf network modeling, If one considers a simple network
transforration, where unilateral elements are modeled by their math-
ematicil counterparts, as topological, then the entire method is purely
topological. I’

tion in the amoeonunt of labor envolved in computing network functions,

When Mason developed his method in 1957, very little was being
done in automatic analysis by computer and his work bears the flavor
of this emphasizing its applicability to hand analysis. Since that time,
a considerable interest has developed in computer aided analysis and
many of the benefits of reduction in computational effort carry over fo
remain valuable 1o this new field but, since the computer is not as per-
ceptive as the human, a considerable amount of the work requires revi-
sion before it can be considered compatible, Specifically the method
requires simplification and the elimination of those steps which neces=-
sitate recognition of the more complex models of unilateral elements,
the method can be divided into three parts: First; modeling of the
original network with ideal elefnents and generating a linear partly
oriented graph. Second; finding directed trees of the partly oriented
graph. Third; computing network functions form the trees thus pro-

duced,

Procedure,

1. Start with a general network and reduce all unilateral elements

to one of the following:

a. A current source whose value depends on the voltage of one

terminal {transadmittance).

=22



b. A current source whose value depends on the sum of the

voltages found on each terminal (Gyristor),

Ce Combinations of a and b above such as the Gyrator, (a con-
fluent ring of 3 Gyristors) or the unator (a confluent ring of

3 transadmittances).

As an example of this process, consider a voltage controlled cur-

rent source immeshed in a simple network,

1 2 © 7 Y Vin
O Yg1 : @)
A
Vin i R 2é{out
O l O
T

The graph for this network using transadmittance modeling is:

1 + 2
Yg ‘

=23-



Other more complex models could be used but this model has the
merit of being the simplest because, in order to make an isomorphiv
transformation, it is nececssary to account for all currents at vertex 1,
but a transadmittance element from vertex ! to vertex 2 alone does not
accomplish this, It is necessary therefore in the general case to pro-
vide a transadmittance elecment from the control vertex to both the

source vertex and the sink vertex of the generator.

II. Form a linear, partly oriented graph of the transformed network,
In such a graph, bilateral elements are represented by undirected

edges and unilateral elements by directed edges as indicated in

I above,

III. For a reciprocal network, compute its node determinant as tre«
admittance products in the ordinary sensec. Mason shows that the
determinant can be expanded as the sum of all possible path
cofactors for paths between any two vertices in the network, The
path cofactors are tree admittance products for a new network

where all vertices in the path are coalesced to a single vertex.

IV, For anonreciprocal network, specify the reference vertex.

V. Compute all tree admittance products with the following modifi-

cations:

a. Multiply tree admittance products by (--1)rn where m is the
number of gyristors, if any, pointing away from the refer-

ence vertex in that tree.

b. Multiply a tree admittance product by zero if any unistor

points away from the reference vertex in that tree.

-24-



Using the network of figure 1 as an example, a linear graph
using the unistor or transadmittance element is formed as shown
in figure 6 by the method of I above, and the trees of this graph

are computed,

Figure 6,

Graph of the Network of Figure 1 Using Mason's Method,

Trees less those with directed edges pointing away from the

reference vertex (such as 138, 148, 478,and 248) are:

135 235 345 458
136 236 346 467
145 245 356 468
146 246 368 567
156 256 457 368
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After cancelling terms with equal magnitude and opposite signs
such as Y5 Ve Vo and Y5 /4 Vg (so that Y5 Vg Y7 + Y5 Y¢ Vg = 0), we
have the determinant of the node admittance matrix:

S Yy Y3 ¥ T ¥y V3V T Y YYs oy V.Y
YLV Ve P Y3V t VY3V t ¥V, s
T YV t Y3V Ys T VY5V t Y3 Y, Yy
Ty, Ve Ve - Ve Y3 Y6
Mason's method is a direct outgrowth of the concepts devel-
oped by Percival, Mayeda, Coates, and others, but it improves
upon them by showing the simple relationships between the topo-
logical analysis of reciprocal networks and that of non-reciprocal
networks. With some modifications and a restructuring of the
basic orientation it forms the basis of an excellent method of com-
puter alded analysis., Nathan has proposed an identical graph
structure but a different and very much more complex method of
finding "admissible' tree admittance products. It is not difficult to
show that the partly directed graph used by both Mason and Nathan
15 the simplest graph representation possible for characterizing a
network. It is clear that the basic topological quantity, the edge
bounded by its two end points or vertices is the simplest model for
bilateral elements. The directed edge is likewise the simplest
model for unilateral elements, Since most generators require two
directed edges, one might question whether it is possible to model
such a generator with only one edge. It is indeed possible but, the
dependence relationships which are established would have to be
conveyed by means other than topological, such as a 2 x 2 matrix
or simultaneous equations. Since this is non-topological infor-

mation, it is eliminated as a possibility, The two directed edges
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are thus scen to be the simplest purely topological model which

expresses all dependence relationships.

One of the primary objectives in Mason's paper is to show
the means for graphically expanding the terms of the determinant
of the node admittance matrix, This fact has subdued the more
important general topological method emphasized here and has
led to a misunderstanding on the part of some that it is not direc-
tly related to the mainstream of developments in topology. Seshu
and Reed [10] have dismissed the method unfairly in a summary
manner and emphasized the compartively cumbersome method
of Mayeda et. al. Though the topological expansion of determinants
may have great future significance, especially in computer mani-
pulation of matrices, the importance of the direct topological
analysis by means of trees of a partly oriented graph should not

be underestimated.
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TOPOLOGICAL ANALYSIS OF GENERAL NE "'WORKS BY THE METHOD
OF A, NATHAN,

Nathan's method is similar to that of Mason with the exception of
the manner in which tree admittance products are obtained, Nathan
requires use of newly defined topological entities such as "loop-trecs®
and 'loop-woods' which challenge the imagination with the very
unseemly juxtaposition within a single term of the concepts of
directed loops and directed trees, Although the rules of formation of
looptrees and loopwoods arc straightforward enough, they are nonethe-
less complex to the point that diminishes the plausibility for their use
in computer programs., Reccognition of the loopwoods without error is
very difficult for a hand analysis of a network of intermediate size,

Any systematic procedure based on this method would be required to
identify all directed loops as well as directed trees. In addition it would
also be required to identify sets of nth order loops in a manner similar
to Mason's gain formula. This is a computational hazzard, The bene-
fit of doing so, however, lies in the fact that many fewer trees need

be found where directed loops exist. This corresponds roughly to
removing common factors in the expansion of the determinent of the net=-
work. Since finding loops is as difficult as finding trees by computer,
the method is not ideally suited to machine implemintation, It would

be better to find only loops or only trees,

In his paper, Nathan makes the claim that a desirable objective
which he seeks is the determination of network quantities from a graph
which is topologically identical to the given network and indeed he has
come remarkably close to accomplishing this task, but some differences
do and must exist in certain cases, Because he models the
unilateral elements with transadmittances, the network transformation
listed in the following procedure is required, Nathan's recent paper [16]
seems to have ignored the fact that Mason's [3] has proposed the same
partly directed graph. Nathan says, referring to signal flow graphs,

"+ . o this graph is much more complicated than that of the original
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network since it replaccs ~ach reciproveal branch by two parallel
branches', All this is true for sipnal flow graphs, but in reference [3]
Mason very briefly has shown thet the simplest graph of a general net-
work can be used to con.pute the ceterminant of the node admittance
matrix. In this Mason has shown *he way and Nathan has subsequently
and correctly concurred. Nathan has succeeded in reducing difficulty in
sign determination. All sign information is taken into account in the

formation of the inopwoods.

Procedure.

1. Copvert all unilateral network elements into equivalent transad-

mittances as shown earlier for Mason's method,
iI. Draw a linear partly oricnted graph of the transformed network.

III. Find all directed loops - these are loops of directed edges each of

which is confluent with the others,

IV. Find all directed loop trees - these are directed trees with refer-
ence vertices., Compute loopwoods of all orders. These are sets
of loop trees common to loops found in IIT above. The loopwood of
order zero degencrates to the set of ordinary directed trees of the
network., The first order loopwood corresponds to the Z-trees of
nrdinary topological analysis with the exception that one loop at a
time containing a gain or unilateral element is included. Higher
order loops taken two at a time, three ata time, etc. are treated
in a manner similar to that used in Mason's gain formula for sig-

nal flow graphs.

The rules of determining the symetric and asymetric cofactors
of the node determinant by this method are quite complex. For

those who desire a more detailed description, reference [:6] serves

as the best guide,
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Let us consider again the example of figure 1. Our first step
is to wonstruct a suitable mathematical model where the generator
is reprosented by two transadmittance elements; one supplying
positive current to the nelwork and acting like a source and the
other supplying negative current and acting like a sink. Care must
be taken here not to confuse the direction of current flow with the
sense of direction of the dependence relationships of the elements
y_and -~y . Each originates at the control vertex to preserve these

relationships necessitated by the network structure. All this is

shown in figure 7.

The same linear graph as shown for Mason's technique in

figure 6 applies to this model:

/ 'Yg
Vg
YI Y3 YS 4.\
_ » v
Y2 Y4 6
Figure 7,

Transformed Version of the Example Network,
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The next step in evaluating the determinant of the node
admittance matrix is to consider the partial graph with all directed
2dges removed, This is shown in figure 8 and the trees of this
graph produce some of the terms in the expansion of the determi=-
nant corresponding to the loopwoods of order zero expressed in

Nathan's terminology as:

Tree admittance

L () = products of modified
(k) graph without direc-
ted edges g
Y3 Y5

"
b4 y6

r

Figure 8,

Partial Graph of Figure 7.
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The trces are:

135 15¢ 245 345
136 235 246 346
146 236 256 356.

The next and somewhat more complex step is to find all loops
taken one at a time and evaliate the loop trees or directed trees
which terminate on these loops. One such directed loop tree

having the reference vertex as its reference is:

If it were not for the allowable loop, this would be a 2-tree, with

the reference vertex in one part and all other vertices in the other

part.

Similarly, the other first order loop trees are found as shown on

the next page.
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Taken together these are the first order loopwoods and the terms

produced are:

Loopwood 1 g g g
of the = = (1)
l1st order L
(k)
k
- - Yg Y3 Y6 L4

And, since there are no second order loopwoods, the procedure

terminates therefore;

& = Y1 Y3Y¥s T Y1 Y3V t Y VY5 Y1 Vg Yy
TY Y5 Ve T Y2V3Ys T VY3V F YV Ys
t Y,V Ve T YRV Vg t Y3 Yy Vs t Y3V, Yy
ty3¥g Vg - Vg Y3 Ve
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It requires o great deal of care to perform these computa-
tions by hand but, after much practice the method could be found
belpful. Tt does have the advantage of producing factored form
results but foi computer analysis, it seems unduly weighted with
diverse procedures and sub-procedures., A more direct method

is much to b preferred,
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TOPOLOGICAL ANALYSIS OF GENERAL NETWORKS BY THE METHOD
OF A, TALBOT,

Talbot has proposed a mixed method of analysis, partly algebrau
and partly topological. The algebraic portion starts with the develop-
ment of the edge admittance or impedance matrix which, in general,
1s not diagonal. This matrix is rearranged in such a way that all the
necessary relationships between coupled elements of non-reciprocal zuts
are cxpressed as sub-determinants of loworderusually 2 x 2falling on the
main diagonal. From the sub-determinants, selection criteria for
determining the admissibility of terms computed from the trees of the
network is derived. The topological aspects of the method depend
essentially on evaluating trees of the network and signs of the terms
represented by admissible trees, from the point of view of computer
aided analysis, the method is cumbersome because many different
procedures, including those for manipulating matrices, are required

and the essential benefits of simplicity of the topological technique have

been sacrificed.

Procedure.

I. Transform all unilateral or active elements to square matrix

admittance parameter representation,

1I. Form the network branch matrix in such a way that all passive
elements are single uncoupled elements entered on the main
diagonal and active or unilateral elements consisting of square
matrices are entered on the main diagonal. (It may be required
to change edge order to accomplish this.) The resultant matrix

should have the form shown on the next page.
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- .
where some of the [Yk] (where k = 1, 2, . + . )maybe matrices of

low order and others may be single entries representing individual clenicn’s,

III, Form a selection table from the branch matrix showing all pos-
sible combinations of parameters Y1 , YZ’ . » » and compute
the determinants pertinent to each of these combinations, These

determinants will form admittance products for the elements or

coupled networks.

IV. Draw a linear graph of the network from the entries in the branch

matrix.
V. Compute all trees of the graph.

VI. Form a selection table listing all possible combinations of trees
taken 2 at a time and corresponding to entries in rows and col-
umns respectively of the branch matrix. Each combination real-
ized produces a set of elements identifying a trce admittance

product. Admittance parameters from III can be back substituted

at this point.
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VII. Compuis sign term for cach admittance product according to

Scection V p. 175-179 of Talbot's paper [ 7] .

VIiI. Cormpute determinant of the network as:

Tree admittance products

IX. For cofartors of the node determinant, a new edge matrix must
be formed and a new graph corresponding to this matrix must
also be formed. The process of computing follows steps II through

VIIL

Bacause this method is not entirely topological and rela-
tively unsuited to computer analysis, no example will be given
here hut, the interested reader is referred to Talbot's paper [7]

where a number of good examples are given,

37 -



TOPOLOGICAL ANALYSIS OF GENERAL NETWORKS BY THE ME T1iOL
OF M, T, JONG AND G, W. ZOBRIST,.

Jong and Zobrist have proposed an extension to the methods of Mayeda zud
Coates with some basic differcnces in approach. The main differences
are that only one network graph is required, not two, and higher order
trees must be computed where the networks contain active or non-recip-
rocal elements. Using just one graph is a definite advantage but find-
ing the higher order trees in a systematic and efficient manner is a
problem yet to be solved. At the time of this writing, Jong has devel=
oped the method fairly well for non-reciprocal elements in the form of
transadmittances, but the extension to networks containing more than
one dependent voltage source has not yet been done., This is no funda-

mental limitation but it impedes the process of evaluation.

Considering networks with only transadmittance elements and
bilateral elements, the computation of the determinant of the node admittance
matrix by the method of Jong and Zobrist starts by forming allthe tree admittance
products of the passive sub-graph, Then higher order trees are obtained to
express those relationships caused by the transadmittances. The following pro-

cedure will be illustrated with the aid of the example network of figure 9,

Procedure,

I, To find the determinant of the node admittance matrix, first sep-
arate the network into active and passive sub-networks Na and

N as shown in figure 10,

II, Generate the linear graph Gp of the passive network Np as shown

in figure 11,

III. Compute the trees of the passive sub-network,
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Dependent Current

YB T\]]
Generator
a b c
o 2 —0——-———————9
Vi Y3 V4 |
J
Figure 9,

Example Network.

® o

7
O

a}) Active sub-network.

b) Passive sub-network.

Figure 10.

Active and Passive Sub-Networks for the Example.
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Figure 11,

Graph of the Passive Sub-Network.

For our example, the trees of Np are found by permuting

edge numbers as follows:

ele =2 -3 - Ckt

1 2 4
1 3 4
2 3 4

From these, the first set of terms in the expansion of A is

produced:

o —
T = Yy Yo ¥qg T Y Y3V T VYV,
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Iv.

We now procced to {ind the ncext higher order k-trees which in
this case is the sot of 24recs where veriices are separated in a

special way as iltvitrated here for ko = 1,

. 1 . s
To find T  (the sct of 2 trees required) it is necessary to

separate the graph & irto controlling vertices and controlled

vertices of the ftransadmittance clements:

i = + controlling vertex
] = = controlling vertex
k = + controlled vertex
1

= =~ controlled vertex

Then, we find sets of 2-treces -with controlling vertices separated
and also with controlled vertices separated and take the inter-
section of these two sets to produce the required higher order

sete V1Z:

is found by identifying the vertices of the graph Gp and
i, j

computing as shown in figure 12,

The 2 trees T and T are found from the modified graphs

2, ; 2y, 1

shown on the following pages.
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i
(a)
k 1
% A
s /
2/ 3 ‘/4/ _.__) Vo ¥y t Y3V,
\ /
\ " T2
\‘\\% F)
i, j
(b)
™~ '""> Yl yZ + Yl Y3 +Y1 Y4
ty, ¥, Ty, ¥
1\\ 3 4 273 274
N, ) Tzk 1
]
(c)

Figure 12,
(a) Controlling Vertices ij and Controlled Vertices kl of the Graph G,
(b) 2=-Tree Products Produced by Identifying i with j.
(c) 2-Trees Products Produced by Identifying k with 1.
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v,

VI,

and,

3
i

Y, Yu t Y3 Y%ﬂ ViV, vy Y3ty v, Ty, Vs +Y2Y4—i!

J

Y2 Y4

Note: In this step, it was necessary to eliminate five unneces~

sary 2-trees = a wasteful effort,

If there were more transadmittance elements, higher order sets
of k-trees would be required. However, for the examplek = 1
and the 2-trees terminate the search, Vertex separation for

higher order trees is more complex and the interested reader is

referred to the paper of Jong and Zobrist for clarification onthis point.,

A is found by summing all tree admittance products thus pro-

duced according to the formulation following on the next page:

«d3~



A = T i y r T
St m
r =1
w2 123
+ E Ym1l Ym2 L " Yml Ym2 Yms3 T
; 2.
. F Y1 Ymz y T]L v
mr
where:
Y r = The rth transadmittance element.
m
T° = Sum of all trec admittance products of the graph Gp.
TF = Sum of all 2-tree admittance products
separating the network Np into two parts,
On containing the + and - input vertices.
The other containing the + and - output
vertices of the rth transadmittance element.
rl, r2 . .
T = Higher order tree admittance products as

explained in text.

For our example, this is simply:

A = ° + T!

bg
i
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The coinplrxity of computing higher order k-trees incrcasce
very rapidly 53 (he number of unilateral clements is increaserl,
This is shown d onatically by computing the number of sets or

higher order irecs 25 a function of k as shown in table 1,

It is clenr that for an active network with four or more
gencrators, the cost of computing k + 1 tree admittance pro-
ducts considerirg that all N (k) sets required would be prohibitive.
Many of theso cormbinations may produce zero terms. This is
evidence of the [act that some efficiencies in the computing pro-
cess are possible. The method in general has promise but also
some difficulties, the greatest of which seems to be the difficulty
of finding the higher order k-trees where vertices are separated
into many different required arrangements. When this problem is
solved, it may be possible to make good use of the technique for
computer application but at the present time and for this reason, it

is not suitable.

Table 1.

Number of Sets of k=-Treesasa Function of k.

k ‘ N (k)
1

2 4

3 24
4 192
5 1920
6 23040
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COMPARISON OF THE METHODS OF GENERAL TOPOLOGICAL
ANALYSIS DISCUSSED ABOVE,

Each of the methods of topological analysis can be divided into
three broad task areas involving first, formation of a mathematical
model; second, generation of a linear graph, and third, determination
of admittance parameters, Each differs from the others in some if not
all of these categories. Model formation starts with the initial network
to be solved and consists of reducing the network to a form wherein cach '
element canbe represented by an edge of the corresponding linear graph. The
linear graph isthenderived and the required network functions are determined
fromthe graph by some systematic method. Onthebasis of these categories,

a comparison between methods will be attempted,

It would, of course, be desirable to avoid the necessity for trans-
forming a network into a form suitable for generating a linear graph
but unfortunately no one has as yet come up with a satisfactory method
to do this; furthermore it is conceptually not possible to relate the
required information from a dependent source to linear graph form
without adding an element not usually found in the schematic of a net-
work, namely that element required to show the dependency relation-
ship. The easiest method of establishing this dependency relationship
seems to be to use the transadmittance element or voltage controlled
current generator with the controlling voltage existing at one of the ter-
minals of the current generator. Mason has adopted this approach but
has also included a redundant method using the Gyristor., Since any
unilateral element can be formed using the transadmittance ele-
ment alone, and since transadmittance has a simple physical signifi-
cance, it seems unneccssary to include the Gyristor as a special case.
The method of using small matricies to describe unilateral elements

as done by Talbot and Brown is comparitively cumbersome,
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The dual voltage and current graphs of Mayeda and of Coatcs contain
a great amount of redundancy. Here cach bilateral element is reproe-
sented by two edges. Even though Chen's method uses a single graph,
his graph still contains two edges for each bilateral element, By far
the simplest graph structure is that proposed by both Mason and Nathan
using undirected single edges for passive elements. Although the graph
structure proposed by Brown is relatively simple, each edge is direc=-
ted and it is necessary to keep account of direction in determining
admittance parameters, In the next section, we will develop a method

using partly oriented graphs similar to those of Mason and Nathan,

All topological methods reviewed in this paper make use of the
concept of a 'tree' of some kind. Starting with the methods of Mayeda
and Coates, the concept of common tree was introduced. This concept
was greatly simplified by the directed tree of Chen. Nathan defines
loop-trees and complicates the picture unnecessarily., Since all of
these methods use ''trecs' or loop trees in determining admittance
parameters, it would seem that the simplest tree-finding algorithm
should be the most effective, In addition to trees, Talbot and Brown
find it necessary to include non-topological data formed from the matrix
equivalents of unilateral elements in the computation of admit-
tance parameters and consequently produce answers at the expense of
considerable additional computational labor, Jongand Zobristhave suggested

the use of sets of k + 1 trees, finding such tree sets is as yet a partly

unsolved problem.

Inherent in the computation of admittance parameters is the
problem of determining sign. The complexity of sign determination
seems to be directly related to the complexity of the tree structure
recognized by each method, Chen has provided methods where the
sign determination is made directly from the tree admittance products,
Brown claims that no sign problem exists, but if onc investigates the

accounting of edge orientation required in determining the admittance
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parouocters for coupled clements, one can recognize all the symptoms.
Tallot’s sign i oblens is not as complex but still requires the compa-

rison of orieni, fion of tree palc -,

Taken nitogether, it woald secem that the best features of all meth-

-~

ods discussed «bove shmild be synthesized into a simple topological
technique that requires the least amount of effort to use and affords the
greatest insight into the analysis problem. This method would use
simplest possible transadmittance formation concepts, the partly ori-
ented grapl structure proposcd by Nathan and Mason, and the simplest

possible adiriitance parameter determination methods of ordianary

passive netwerl- analysis. Such a method is proposed in the next section,
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DEVELOPMENT OF A NEW METHOD FOR TOPOLOGICAL ANALYSIS
OF LINEAR ACTIVE NETWORKS.

Nathan [ 6] and Mason [3]have proposed methods of topological
analysis which have some similar recommending features. Each uses
a partly oriented graph and each avoids the difficulty of computing the
sign terms in the expansion of determinants. The method outlined hecre
is related to each of the methods discussed earlier but owes more to
Mason and Nathan than to the others., It will be shown that this method
is a specialization of the method of Mayeda [1] retaining all the gen-
erality required to analyze any linear active network. This is pos-
sible because, however elegant Mayeda's method may be, it contains
redundant graph elements and redundant sign terms, The procedure
for this method is very simple starting with network modeling, contin-
uing with ceneration of a graph, and concluding with the topological
determination of network determinants and cofactors as shown below

for nodal analysis.

Procedure.

Step 1.

Model all dependent clements by using one or a combination
of transadmittance elements (a transadmittance element is a vol-
tage controlled current source with the independent "'+'" voltage
terminal attached to the current source and the '-'" voltage ter-
minal attached to the reference or ground terminal). If a depend-
ent voltage generator is encountered it will be necessary to obtain
the norton equivalent before transformation to transadmittance
form. Any transadmittance directed from a vertex to the refer=
ence vertex must be replaced by a bilateral edge of the same

value. Justification for this operation will be given later,
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Step 2. -

Form a partly oriented graph of the transformed networ.
using undirected edges to represent bilateral clements and dir-

ected edges to represcnt unilateral elenicnts.

St E 3.

To compute A, the determinant of the network, find all
directed trecs of the partly oriented graph of the network and
from these, compute the sum of the directed tree admittance

products,

Step 4.

To compute cofactors of the node admittance matrix, find
all directed 2-trees of the partly oriented graph of the network
and from these, compute the sum of the directed 2-tree admit-

tance products,

A dual procedure is possible for loop analysis using the
transimpedance unilateral element model to compute the deter-
minant of the loop impedance matrix and its cofactors, However,
we will illustrate the method only for nodal analysis because it is

relatively easy to transform from one to the other,

Mathematical Development.

Before we can build the mathematical foundation to support this
new mecthod of topological analysis of generallinear networks, it is necessary
to define certain terms, most of which have alrcady been defined else~
where but are repeated here for clarity. Some new terminology, how-
ever, is neceded to express scveral new concepts necessary in the

development.
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Definitions.
1. cdge A line segment with two endpoints used
to topologically represent a mathemat-

ical or physical relationship.

I a. undirccted edge Any edge which graphically represents

a bilateral mathematical or physical
quantity. In such an edge, no distinc=-
tion is made between either of the two

endpoints,

1 b, directed edge Any edge which graphically represents

a unilateral mathematical or physical
quantity. A directed line segment is
used to represent directed edge and a
distinction is made between the vertex
of departure and the vertex of arrival of

such an edge.

1 c. controlling edge An edge of a control graph, graphically

representing the voltage control function

for a transadmittance.
R vertex An endpoint of an edge.

2 a. vertex of departure The vertex nearest the tail end of a

directed edge.

2 b, vertex of arrival The vertex nearest the head end of a

directed edge.
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2 c.

2 d,

reference vertex

extreme vertex

transadmittance

graph or linear graph

undirected graph

directed graph

partly directed graph

subgraph

control graph

A selected vertex within a graph, which

has been selected as datum,
Any vertex within a graph, which has one
and only one edge attached to it.

A vertex of degree 1,

A mathematical model of a voltage con-

trolled current generator represented

topologically by directed edge wherein
current is thought to flow in an amount
proportional to the voltage that exists at

the vertex of departure of that edge.

An ensemble of edges which, if con-

nected, are connected at vertices only.
A graph wherein all edges are undirected
A graph wherein all edges are directed.
A graph wherein the edges are either
directed or undirected or combinations

of both.

A graph which lacks one or more edges

of the graph to which it is related.

For every partly directed graph, onec
control graph exists to graphically
model the control relationships of trans-

admittances within the original graph,
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This control graph is formed by first
raplacing every undirected edge with
twn oppositely directed edges between
the same termiﬁals. Then, the head
end of cach directed edge within the
graph is disconnected and subscquently
reconnected to a chosen reference ver-
tex. The control graph is therefore a
directed star graph where all edges are

directed toward the reference vertex.

7. directed path A sequence of edges which are connected

in such a manner that all edges are
directed in the same way and that all the
vertices involved are of degree two
except the initial and the terminal ver-

tices which are of degree one.

8. tree A circuitless connected, subgraph which

contains all the vertices of a graph.

9. directed tree A tree of a partly directed graph where-

in all paths between extreme vertices and
a reference vertex are directed paths

terminating on the reference vertex,
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Transadmitt woe Mool

It is thenretically possible to model any real electrical network
using the transadmiitance model alone although for many reasons it may
not be desirable tu o so, We will, however, make this assumption that
for nodal analysis, we can reduce any unilateral or bilateral element to
an equivalent transadmittance model, Figure 13 shows the ordinary
network mod=l of a soliage controlled current generator along with the
associated transadrnittance model, Here it can be seen that two ori-
ented edges are requircd to show the source and sink nodes of the cur-

rent generator with their relationship to the control vertex a, the point

e

r
~ — 4 ~ - J .~ ~ S
Ordinary Net- Transadmittance Mayeda-Coates
work Model, Mecodel. Model,

(a) (b) (c)

Figure 13,

Model of a Transadmittance Element
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al which the control voltage - is applied. Also shown is the earlier

and somewhat redundant Mayeda~Coates model indicating the current

and voltage graphs superimposed.

A bilateral element such as a resistor or capacitor can be modeled
as shown in figure 14 using transadmittance alone., However it is not
necessary because of symmetry to use two directed edges. Only one
undirected zdge is required to express all the necessary and sufficient

information required for analysis purposes.

Transformers and many other practical networks can be modeled

by combinations of unilateral and bilateral elements but the details will

not be taken up here,

Using the transadmittance model, we can represent practical net-

works with a combination of oriented and non=-oriented edges such that

a b
y
oA AAAN A —8 /b\b /D\ e ®
Y ﬂ Y,
y
e o L
r r r
N— o 1y — S N — S N— A
Ordinary Net- Transadmit- Maycda-Coates Undirected
work Model. tance Model Model, Edge Model.
using directed
(a) Edges. (p) (c) (d)
Figure 14,

Models of a Bilateral Element,
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the essential and none of the noncssential information is conveyed. We

shall now show how a partly directed graph of a network can be formed

and used to

solve for the determinant of the node admittance matrix and

its cofactors but first, we shall formally demonstrate that the partly

directed graph model is justified.

Establishing a Relationship Betwcen a Directed Graph and a Partly

Directed Graph.

Let us start by considering the following kind of network with its

descriptors.

Given:

Theorem 1:

Proof:

1. A network N containing unilateral and bilateral

elements,
2 A transadmittance model M of the network,

3. A directed graph Gd of the transadmittance model M.

(All edges of Gd are directed. )

4. A partly directed graph G of the model M where all
passive elements are represented by undirected

edges and all active elements by directed edges.

Gd and G arc topological equivalent in the following
way. All incidence relationships necessary and sufficient
to describe the network are preserved in a transformation
from G, to G, Also, the rank and nullity of Gd is equal to

d
the rank and nullity of G.

" The graph of a transadmittance model of a bilateral

element using oriented edges is redundant., This is so

becausc the two directed edges of the graph (refer to

-56~



floure L4) aro idoatical except for direction which can

e dntorchonoeod without loss of generality, Repre-
~oatine thes -aph by one undirected edge simplifies
coostrocture ond preserves the necessary incidence

selation s nip s,

The incidtence matrix A representing G contains
onc colunn fnr cach passive bilateral element and
the incidence matrix Ad representing Gd contains two
~olumns, identical except for sign, for each passive
hilateral clement. A and Ad are otherwise identical
and 1t follow: that the rank of each is the same because
by elementary operations performed on the columns of
Ad, A can be formed, It also follows that the nullity
is the same because all vertices connected by directed

edges in Ad are connected by nonoriented edges in Al

Computing & from the Partly Directed Graph,

In order to prove that we can compute the determinant of the node

admittance matrix from the directed trees of this partly directed graph,

we will first recall a relationship developed by Mayeda and Coates as

follows:

where

and

Y = A, Y Af (1)
n 1 v

the incidence matrix of the current graph which, in the
case of an oriented graph of an exclusively transadmit-

tance model, is the incidence matrix of the graph itsclf,
the diagonal edge transadmittance matrix where uni-

lateral as well as bilateral clements appear only on the

main diagonal,
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A = the incidence matrix of the voltage graph which in the
case of an exclusively transadmittance model is the

incidence matrix of the control graph.

Consider the relationship between transadmittance models of a net-
work together with the Mayeda-Coates models containing voltage and cur-
rent generators as shown in figures 13 and 14, There isa 1to 1 cor~
respondence between the elements of the transadmittance models and the
current generators of the Mayeda-Coates models. This allows us to
equate A; the incidence matrix of the current graph in equation (1) with
A the incidence matrix of the directed graph of the transadmittance
model. Transforming the transadmittance model into its control graph
in the manner indicated in definition 6, page we produce a graph which
is identical to the voltage graph of the Mayeda-Coates Model, therefore,
AC, the incidence matrix of the control graph of a transadmittance
model is identical to AV the incidence matrix of the voltage graph of the
Mayeda~-Coates model and we can specialize equation (1) to the case of
the directed graph according to equation (2). This result is also appli-

cable to the partly directed graph according to theorem 1,

Yy =4y A (2)
n e "¢, T

where , ‘ -

N =/ a = incidence matrix of the partly directed graph.

ij
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where

A = aij = incidence matrix of the partly directed graph,

@Lé’rb’

Y -
.~ ;77 =l for each undirected edge j contacting the ith vertex
k\ or each directed edge | departing from the ith vertex.
!
35 = '+l for each directed edge j directed toward the ith
vertex,
.
0 otherwise.
Ye = diagonal edge admittance matrix which may contain any
number of transadmittance elements.
AC r = the incidence matrix of the control graph of G with
?

reference vertex r. The justification for this special-

ization is according to theorem 1.

By the Binnet-Cauchy theorem, we know that Det Yn is the sum of

the products of corresponding majors of A Ye and A -

3

Products of corresponding
Det Y_ = ; ¢ (3)
n il rajors of A Y and A .
e c, r
\
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it ren b easily shooo th any nonsingular major of A Ye cor-
respors o a tree of (i, (Sce seshu and Reed 10 Theorem 4-10,)
It wiil +ls0o be shown fbat ory coasingular major of Ac, - corresponds
to a ire of the originel ¢raphs directed toward the reference vertex.
This {. ¢t will be proved subsequently in theorem 2 but for now consider
the significance of these two theorems, We now have a way of uniquely
wdentilving all the terms in the expansion of the determiant of the node
admittince matrix of a nonreciprocal network., Each term corresponds
to a tree moreover, each terir corresponds to a directed tree which may
contain any number of bilateral elements. All this produces the desired
result without the cancellations ordinarily encountered in loop and node
analysis by matrix methods. Not all cancelations are avoided because
each active element produces some terms which must be canceled but the
ordinary cancelations resulting from passive elements are avoided thus
reducing ¢omputational effort. The method improves on the Mayeda-
Coates method by being more direct. That is, the determinant of the
node admittance matrix is produced immediately as directed trees of a
partly directed graph., The Mayeda-Coates method requires computing
all trees for two graphs of approximately the some complexity, the vol-
tage graph and the current graph, and then eliminating all but the com-

mon trees. Such a process contains needless redundant effort.

Proof That a Nonsingular Submatrix of a Control Graph can be Related

to a Directed Tree of a Partly Oriented Graph.

We shall now formally show the importance of the control graph in

determining acceptable directed trees.

Given: 1, A partly directed graph G with v vertices and e edges.

2, A tree T of the partly directed graph.

3. A control graph Gc r with reference vertex r and
’

incidence matrix AC r related to the partly directed
?

graph G in the following ways:
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Theorem 2:

Proof:

a. r is a vertex in G,
b. All edges terminate on the reference vertex r.

o One edge originates on every departure vertex

of directed edges in G,

d. One edge originates on each of the two vertices
of an undirected edge in G,
4, A subgraph G of G and its incidence matrix
ct, r C, T
A corresponding to a tree T in G,
ct, r

Act - is nonsingular if and only if all edges in T lie
?

in a path directed toward r,

For the rank of Act r to be V-1 which is to say for

?
A - to be nonsingular, it must be possible to associate

oxfcz’unique controlling edge of Gct, r with every vertex in
T, This is so because there are only V-1 vertices distinct
from r and if each of these vertices were not represented
uniquely, one of the following intolerable conditions would

occurr.

1, The vertex would have no controlling edge associated
with it, This results in a row of zeros in A ¢ and
ct, r
therefore the rank of A { V-1and A is
ct, r ct, r

singular.,

2. The vertex would have a controlling edge which is not
unique, This leads to two identical rows in Act r

2
which are linearly dependent, hence the rank ¢ V-1

and A is singular,
ct, r
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Consider any dirccted path 1L siarting with an extreme vertex., If the
edge attached to this vertex is oricnted away from the rest of the graph,
. with it and

it is not possible to associate a contvralling edge in Gct
’

condition "a" exists therefore A, ts singular,
]
If the edge attached to the extreme vertex is oriented toward the
reference vertex r or if the edge is undirected, it is possible to assoc-

iate a controlling edge with this vertex and Act L may be nonsingular,
?

Let us continuc step by step down the chosen path toward the ref-
erence vertex. We shall show with the aid of figure 15 that if we meet
an edge directed away from the reference vertex, the path is not a valid
directed path according to the definition 7, page and hence will not
produce terms in A, The 2 possible ways we can encounter an edge
directed away from vertex r are shown in case 1 and case 2 of figure 15,
In case 1, edge a is bilateral and its control graph produces two control
edges at vertices 2 and 3. That control edge between vertex 2 and the
reference vertex is redundant also no other control edge is associated
with this vertex and condition 2 exists. The incidence matrix of such a
control graph is therefore singular. In case 2, no control edge is pos~-

sible connecting vertex 2 with the reference vertex and condition 4 exists

therefore the incidence matrix of the control graph is again singular.

From this it is apparent that the only acceptable condition for
Act, , to be nonsingular is for all directed edges in the path to be
directed toward the reference vertex, Since the cntire tree T can be
decomposed into paths from extreme vertices toward the reference
vertex (some edges may appear in more than one path), all directed
edges in the tree must lie in a path directed toward the reference ver-
tex if A is to be nonsingular, Conversely, if all directed cdges

ct, T
of a tree of a partly directed graph lie in a path directed toward the
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(a)

Case 1,

(b)

Case 2.
Figure 15.

A Path and Its Control Graph.
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reference vertex, G the graph of controlling edges associated with

ct, r
that tree is nonsingular becausc it is possible to associate at least one

unique controlling edge with each vertex.

Example of the Computation of A by Trees of the Partly Directed Graph,

Let us now consider a simple example of the method. Using the
network of figure 16, let it be required to find the determinant of the

node admittance matrix.

Our first task is to draw the partly oriented graph of the network
as shown in figure 17. The directed trees of the partly directed graph

are found to be:

1 2 4 2 4 5

4 3 =4 = B -

2 3 4 “3e a4 - b -

1Yy vy
a b c
Y, @___
Y1 Y3 ¥4

Figure 16,

Example Network,
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r

Figure 17,

Graph of the Example Network,

Because Y is equal in magnitude to but opposite in sign from Y5, the

last two trees represent terms that cancel and we have:

A = Y1Y2Y4+Yl Y3Y4+Y2.Y3Y4+Y2Y4Y5.

Determining the Admittance Matrix from the Partly Directed Graph.

It is possible to compute the node admittance matrix as follows:

Step 1.

Form the incidence matrix A of the partly directed graph

in the manner shown earlier.
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Ste E 2‘

Form the incidence matrix Ad of the equivalent directed

graph in the following way:

For every column in A in which two +1's appear, change
one sign to -1 for either entry. This corresponds to an arbitrary
assignment of edge orientation for bilateral elements, The
resultant matrix Ad could have been obtained from a directed
graph equivalent; however, this process eliminates the need for

redrawing the graph.

Step 3.
!
Form the unilateral edge selection matrix A from the partly

directed graph in the following way:

S

where
1
a.. = a.. for bilateral edges.
1] 1)
ij = 1 for any unilateral edge j departing from vertex i,
!
.. = 0 otherwise,
1]
Step 4.

Form the diagonal edge admittance matrix Ye including all

admittance elements as follows:

Y = Y .. |wherey .. is the admittance of each edge j,
e e}) €J)
and is the (j, j)th clement of Ye.

66~



Btep 5.

The noed: adraittance matrix is now found according to the
folluewing foriula
it
Y = A, Y A .
n d e
For our exaniple;
1 1 0 0 1 1
_ : - -1
Ad 0 1 1 0 0
LO 0 0 - 0.4
~ -y
1 1 0 1 1
0 -1 1
1
A = 0 0 0 1
v, 0
Y2
Yy
Y = 3
e
Y4
s
0 Y6
and,
0 0 - (1 -1 07
Y1 Y2 Y5 Vs
0 “Y, V3 0 0 +'y5 1 -1 0
Yn = 0 0 0 Y4 Y5 0 0 1 0
0 0 1
1 0 0
1 0 0|
- I
(YI + YZ) 'YZ 0




Computing Cofactors from the Partly Oriented Graph.

In the previous sections, we have seen how the node admittance
matrix and its determinant can be derived from the partly directed
graph. The process of computing cofactors is more complex but
still follows the same basic idea, that is, the algebraic expressions
representing the incidence matrices of a graph are combined with the
edge admittance matrix in such a way as to form the desired cofactors,
Then, it is shown how these expressions bear a one-to-one correspon-
dence with the directed 2-trees of the partly directed graph. Starting

with the definition of a cofactor, we have:

A = (=)'t M.
ij ij

where Aij the (i, j)th cofactor of det Yn'

M..

ij the (i, j)th major of det Yn'

and M;. can be related to the incidence matrices of the original network

as follows:

M, = A. Y A .
ij -1 e (c, r) =
where
A = the incidence matrix of G with row i deleted
-1
Y = the edge admittance matrix
e
A . = the incidence matrix of the control graph G
(c, )~ c,

with row j deleted,

Again, by the Binet-Cauchy Theorem, we can relate Mij to the product

of corresponding nonsingular majors of A , Y and A t .
-i e (cy r) =3
. } Products of corresponding nonsingular
Mij - majors of A Y and A t . .
- -i e (c, )~ ]
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Proceeding one step further, we know that all nonsingular majbrs
of A_i Ye correspond to 2-trecs of the original graph G with vertex i in
one part and the reference verfcs in the other part. We can arrive at
this conclusion by investigating the topological significance of A-i Ye.
The deletion of row i can be directly related to the removal of vertex i
in G to form G-i° This is done by identifying this vertex with the refer-
ence vertex, Now, all nonsingular majors of A_i Ye correspond to the
tree of Cr_i or the 2-trees of G (See Seshuand Reed Theorems 4-10 and
7-3 [1 0] . ) Altogether, we have shown nothing verynew or spectacular

but the next step is new and reprcsents a significant departure from the

conventional technique.

It can be shown that the nonsingular majors of A cor-

responding to the trees of G-i have a one-to-one relati(gl;sll;gp vJvith the
directed 2-trees of the partly directed graph with vertices i and j in

one part and j being the reference vertex for that part also vertex r in
the other part and remaining the reference vertex for that part. It can
be seen from this that every directed 2-tree of the partly oriented graph

has two reference vertices,
The proof for this depends on theorem 2 in the following way:

A(c r) - j is the incidence matrix of the control graph for G j the
’ = -

modified graph where vertex j is identified with the reference vertex,

Since the only majors of A . that will produce a nonzero result

correspond toatree G-i’ wé(;:eer(g only consider majors froma matrix of the fol-
lowing type: A(ct, r)-j° By theorem 2, we know that all nonsingular
majors of this type correspond to directed trees of G_. which can be
interpreted as directed 2-trces of G with vertex j in one part and the
reference vertex r in the other part. Since these 2-trces must also
correspond to a tree of G-i’ or Z-trecs with vertex i in one part and

the reference vertex in the other part, each must contain both vertices i

and j in one part and the reference vertex in the other. This can be

expressed in the algebra of sets as follows:
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where

We can divide these set of

T2

Js

T

the sct of 2-trees which we seek,

the set of

vertex r in the other.

2-trees with vertex i in one part and

2-trees into two parts each: namely

those which contain vertices i and j in one part and those which do not.

This is so because all vertices including i and j must be represented in

one part or the other part of a

have for example:

which says in words:

The set of 2-treces
with vertex i in one
part and vertex r in

the other,

also,

¢otree set. Clarifying this identity we
I, =Ty T,
1, T 1, T 1, Jr
The subset of 2~ The subset of 2-
trees with vertices trees with vertex i
= iand jin one part + in one part and
and vertex r in the vertices j and r in
other, the other,
T, =T, * Ty
js T ij, T jy ir
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and it follows by taking the intersection of these two sects:

T = (T, + T, ) (), +T, )
ij, r i, jr ij, r js ir
T = T

ij, r.
We know now what classes of Z2-trecs represent the nonsingular
majors of Yn and now we are free to explore the topological significance
of these. Recalling that the 2-trees were originally found by identi=-
fying a vertex j with the reference vertex in G_.; further recalling that
they correspond to trees of G_j, we depend on theorem 2 which deals
with only directed trees with vertex r as the reference. By understand-
ing how G_. was developed, we can now reverse the process and extract
the jth vertex from the reference vertex to see the significance of the
sense of direction for directed paths in each of the two parts of the two-
tree. All valid parts of the <2Z~tree are in themselves directed trees

terminating either on vertex j or vertex r and we have:

A= (1) oW
1) 1], T

i

where Wij . = the sum of all  2-tree admittance products with
2
i and j in one part, j serving as reference for
that part; and r in the other part also serving as

a reference for that part.

Example of the Computation of Cofactors,

As in illustration of the method, let us consider the entire set of
cofactors for the example of figure 16, The directed 2-trees of the

graph G with respect to all cofactors are given in table 2.
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Table 2,

Directed 2~Trees of the Example MNetwork,

11, r

—t

13, r

RS B




Tanble 2 (Continued).

Directed Z-Trees of the Example Network,

zz,rj'

Vo
; (Con't)
|
i

)




Table 2 (Continued).

Directed 2-Trees of the Example Network,

W _ 5
W23, e
2
& 8 3
|
| ¢
IR B
W31, r +(
i
i
1
|
!
]
!
: \ None
L
.W32, T f
o
| |
|
i !
!
{ 3
! P
b
f . g
o
i [ None ’
! e



Table 2 (Corvinued),

Directed 2-Trecs of lhe Txample Network,

33, r

, ,,_E__
-+

(5]
-]

s

33, r
(Con't)
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and,

211 Ty Y Y

A, =Y, Y, - Y, ¥,

B, =Y, T+ ¥, Y.

I = .,

A, =YY, K Y, Y, F Y, Y+ Y, Y

A, = - Y,

A, = o

5, - o

By =YY, K Y Y R Y, Y, H Y, Y, + Y, Y,

From this it is clear that no sign problem exists and all cofactors
are easily determined. It relates directly to the process of determining
2-trees of a reciprocal network with only one exception that directed
trees be considered with respect to reference vertices as discussed
above, The literature for finding 2-trees by computer abounds and we
now have an easy method of applying the benefits of this work to non-

reciprocal networks,
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Conclusions,

Thus far, we have reviewed the current methods of topological
analysis of general networks and have proposed a new method., This
new method has the advantage of being the simplest in the sense that it
15 an exclusively topological method where it used the simplest topo-
logical graph structure possible and the simplest process for determ-
ing the terms in the expansion of the determinant and cofactors of the
mode admittance matrix. The method bears a strong relationship to

topological analysis of reciprocal networks and is very well suited to

implementation by digital computer.

All network functions can be related to the determinant of the node
admittance matrix and its cofactors, Therefore, the development shown
here including solutions to these problems in tcrms of trees and 2 trees
1s applicable, However, some network functions are more conveniently
represented by 3-trees , (24] s FZF;’ » A natural extension to this new
method would be to show the usefulness and significance of sets of

k-trees of the partly directed graph.
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